
. . . . • * F ~ ¢ - -

C o n v e r s i o n o f i) c c ! sI o n I a b l e s

To Computer])rograms
L:~uitt,:NC~: I. l?al~:ss
Sau Fernando Valle9 Stale College, Northridge, Calif.

Several translation procedures for the conversion of deci-
sion tables to programs are presented and then evaluated
in terms of storage requirements, execution time and compile
time. The procedures are valuable as hand-coding guides or as
algorithms for a compiler. Both limited-entry and extended-
entry tables are analyzed. In addition to table analysis, the
nature of table-oriented programming languages and fea-
tures is discussed. It is presumed that the reader is familiar
with the nature of decision tames and conventional defini-
tions.

1. I n t r o d u c t i o n

This paper is concerned with the production of computer
programs from decision tables. I t is assumed tha t the
reader already teas a knowledge of the conventions used in
constructing them. For an excellent description of decision
tables, their advantages and application areas, the reader
is referred to [5].

l)ecisioEt tables have been shown to be an effective de-
vice for the comnmnieation of job definitions between per'-
sons both within and outside of the data processing area.
In addition, they may be an extremely useful aid in com-
municating with a computer, either via an automatic pro-
tramming system or as a hand-coding tool.

IrE hand coding, a decision table is somewhat analogous
to a flowchart. However, in ease of converting complex
systems of conditional rules to efficient programs, insuring
completeness, and guiding program organization, decision
tables seem to offer significant advantages. For an example
of such a complex program, and hand-coding experience,
see [13].

Regardless of the method for translation, orderly pro-
cedures (algorithms) m'e needed in order to achieve efti-
cient programs from decision tables. Possible criteria for
the efticieIlcy of such procedures are translation time,
storage requirernents of tile programs produced, and exe-
cution t ime of the programs produced.

Three approaches to the conversion of conventional,
limited-entry tables are prese~tted in Section 2 of the
paper. They are evaluated in terms of the criteria men.-
tioncd above. The next section examines the more gener-
ally useful cases of limited-entry tables, where ambiguity
is allowed, and that of exl~ended-entry tables, which are
shown to be identical for pro'poses of programming. In the
final section decision-table language structures and fea-
tures are discussed.

All of the techniques presented are applicable either for
manual or automatic programming. Formal proofs of

optimality are not included (seldom is optimality asserted) ;
however, an a t tempt has been made to illustrate the rea-
soning behind each decision or assertion.

2 . L i m i t e d - e n t r y ~ N o n a m b i g u o u s T a b l e s

This section deals exclusively with the processing of con-
ventional limited-entw tables. The term nonambiguous
merely infers the usual restriction against redundancy or
contradiction between rules. The concept of ambiguity is
discussed in more detail at the beginning of Section 3.

in attempting to devise a procedure for tile conversion
of l imited-entw tables to computer programs, let us con-
sider the example shown in Iqgure 1.

Rules

 ::31 1 N N Y

Conditions 2 g

3 l N

F I G . 1

A technique yielding a network that accurately reflects
the logic specified in the table is testing the rules one at a
time until one is found where all conditions are satisfied.
At that point, the actions associated with that rule may
be executed. This procedure might result in the following
flowchart from Figure 1.

, Y (, Y ,~ n w

n n y

Y n n = a =

(Y I [~ Cr_L]

To minimize execution time, the rules would be ordered
on relative frequency of occurrence per number of non-
indifferent entries prior to examination. It should be noted
that the entire network might be transversed in choosing
a rule.

In general, this technique would result in a network
which has as many branch points as there are nonindiffer-
ent entries in the table. A procedure which would result in
less branch points would save computer storage.

Let us try a different general approach. Rather than
examining the rules individually, we may test the various
conditions in order, which eliminates rule(s) from further
consideration. This philosophy should be more eflicient
with respect to storage, as a sitigle test can eliminate
several rules, whereas with the previous method several
tests arc often needed to examine a single rule. Further-
more, the outcome of early tests is "forgotten" when
looking at other rules.

To illustrate this general approach, consider again
Figure 1. If condition 1 is tested and found to be true,

Volume 8 / Number 6 / June, 1965 Communications o f t h e ACM 385

rules 1 and 2 may be eliminated from further considera-
tion. In either case E (error or else) is still possible. In
making a test such as just described, we have parsed
Figure 1 into two subtables by discriminating on the con-
dillon in row 1, the key row. This step may be symbolized
as follows:

C

2

or more simply:

/c,\,
Y n

An entire network may be constructed by repeating this
process for each subtable produced, until all subtables
consist of only one rule (and possibly E). At the point
where only one rule has not been eliminated, a second
phase must be entered in order to explicitly test all previ-
ously untried conditions due to the possibility of an E-
condition. Continuing with our example, the following
network nfight result:

Ci

E / (', .,N C a

y - ~// Y
E 'n " E

@ denotes a test in the second phase

This network with only five branch points, requires less
storage than that depicted previously; however, it was
constructed in a rather arbitrary fashion. For example,
why test condition 1 first rather than 2 or 3 ?

We must devise an orderly procedure for choosing the
test condition which should be used in parsing a given
table in order to yield a network with a minimum number
of branch points. If it is not clear that an arbitrary choice
will not suffice, consider the network which might have
resulted from Figure 1 if C2 had been first:

G "Ca

;, Y ,/ ,, , ~,---~.~ ~,--w-(.3 C,-v--E C, k--E

386 C o m m u n i c a t i o n s o f t h e A C M

I¢ is not surprising that this nebwork is less eftieient
(seven branch points) them the first, because a certain rule
(2) was indifferent to elm s{.atc of the first condition tested
and hence could not be eliminated from further considera-
glen regardless of the result; of the test of C,.,.

[n general, if we parse a table on a givea condition (Ck)
a n d

= n u i n b e F

=- n u n i b e t "

= number
= n u n) . b e r

n of rules in the table,
m of conditions in the table,
y of Y entries in Ck,
x of N entries in C~,
i = number of I entries in Ca.,

two subtables result, each having v ~ - I conditions and
:c+i attd y+i rules, respectively. Clearly, if we carl always
discriminate on a condition which minimizes the value of i,
smaller subtables, and hence more ei[icient networks,
result. Therefore, the first, step in our procedure for choos-
ing the key condition is as follows:

S t e p i . Choose t h e k e y c o n d i t i o n f r o m the se t of rows with the
m i n i m u m m u u b e r of i n d i f f e r e n t en t r i e s .

Perhaps an arbitrary choice from this set would su[tiee;
however, in considering the following example we set that
this is not the ease:

r - - - -

j 17
Both C: and C: satisfy rule 1, as neither contains any in-
different entries; however, either of the following :networks
may be derived if only step 1 is followed.

!f['2--; n E

G

The network on the right requires less storage. I t is obvious
that by testing a condition with all t 7 or N entries, we may
save branch points in subsequent second phase portions of
the network. In a larger table this saving clearly is even
greater. Therefore, our second step might be:

S t e p 2. If one of t h e rows c o n t a i n s all Y or all N entr ies , dis-
criminate on that condition.

We now have two steps which lead to efficient choices
of key rows. I t should be noted tha t these may be applied
by looking at the conditions individually. In order to
derive a more efficient network, it is neeessaw to take
cognizance of the relationships between the various condi-
tions as well as the nature of the conditions when con-
sidered individually. I t is in overlooking this necessity
that many of the "opt imal" procedures described in the
literature fail.

In formulating a third step, we want to parse the table
in a manner which will enhance the possibility of being

V o l u m e 8 / N u m b e r 6 / J u n e , 1955

Stochastic Approach to the
(;rammatical Coding of English
\~'t UI.'ER S. STOLZ, PERCY H. TANNENBAUM AND
}')(EDERICK V. CARSTENSEN
[~i~ rsity of IVisconsin, Madison, Wisconsin

A computer program is described which will assign each
word in an English text to its form class or part of speech. The
program operates at relatively high speed in only a limited
storage space. About half of the word-events in a corpus are
identified through the use of a small dictionary of function
words and frequently occurring lexical words. Some suffix tests
Qnd logical-decision rules are employed to code additional
words. Finally, the remaining words are assigned to one class
0r another on the basis of the most probable form classes to
occur within the already identified contexts. The conditional
~robabilities used as a basis for this coding were empirically
derived from a separate hand-coded corpus. On preliminary
trials, the accuracy of the coder was 91% to 93%, with
obvious ways of improving the algorithm being suggested by
~n analysis of the results.

I. lnt , 'oduetion

h~ recent years there has been an increasing interest in
~},: role of syntax in language behavior (of. Miller [41) and
i!~ various mechanical alnguage processing activities (e.g.,
!l~,l~inger [5] on language translation). In many analyses
~,f syntactic structure of language, there is often involved
~he task of allocating each word of a language corpus to
~s respective grammatical form class or part of speech.
}:~)r rather obvious reasons,--e.g., relatively unavailability
(t' trained human coders, large amounts of text, heavy
irw(~stments of time, etc.--such grammatical coding is a
r;~het, uneconomical undertaking, and many investigators
}ave quite naturally turned to the use of computers to
I)(. 'form the coding operation. Traditionally, this has been
}~aadled through use of a large dictionary containing the

This research was conducted under Grant GS-296 from the
S:itioIlal Science Foundation to Dr. Tannenbaum, who is Director
,i' ~he Mass Communications Research Center at the University
'f Wisconsin where Mr. Carstensen is a project assistant. Dr.
s~.,lz is currently an NSF post-doctoral fellow at Harvard Uni-
',wsity, Center for Cognitive Studies. The use of the facilities of
~} ~' Wisconsin Computing Center greatly abetted this work.

~olume 8 / Number 6 / June, 1965

A. G. O E T T I N G E R , Editor

words to be encountered during the text processing. More
recently, a straight dictionary approach has been supple-
merited through the use of computational decision pro-
eedures. The present paper reports on one such computa-
tional system, WISSYN, in which decisions about how to
code certain words are based on conditional probabilities
of various form classes occurring in given syntactic en-
vironments.

Dictionary Approach. Given a set of words and a set of
grammatical classes, one can map the former into the latter
through a set of one-to-one or one-to-many relations in the
form of a dictionary lookup procedure. One such program
is limited to a set of 800 words of basic English (Lindsay,
[3]) while others use much more extensive dictionaries,
sometimes exceeding 75,000 words (e.g., Kuno and Oct-
linger [2]).

The use of such dictionaries has several apparent short-
comings. Most obvious, of course, is the fact that if a word
in the text is not included in the original dictionary, it can-
not be coded. In principle, then, evelT word which could
possibly be encountered in any application must be ini-
tially accommodated. Moreover, the dictionary entry for
each word must contain all the possible grammatical
classes in which that word could have membership. Since
a great many English words have multiple form class
membership, this introduces a substantial degree of am-
biguity into the analysis. Finally, from a purely practical
point of view, the immense size of any dictionary which
would be needed to process a comprehensive range of
English text makes such a program laborious to construct
and most unwieldy to utilize--if, indeed, it does not com-
pletely overtax the capacity of a given computer system.

Computational Approach. Given such inherent disad-
vantages, it was to be expected that some at tempt would
be made to substitute, or at least to supplement, the dic-
t ionary approach with some Vpe of estimation procedure
designed to make the program construction less laborious
and permit the grammatieai coding of words not included
in the original dictionary [1, 7].

An example of this approach is the Computational
Grammatical Coder (CGC) devised by Klein and Sim-
mons [1]. This algorithm includes a relatively small diction-
ary (approximately 400 items) of frequently occurring
words which are unambiguous with respect to form class,
and a formal decision procedure for estimating the alloca-
tion for all remaining words. To accommodate these infre-

C o m m u n i c a t i o n s o f the ACM 3 9 9

able to apply rule !2. Our goal is ~;o parse ~he table so (J~a~
furore subCables will contain :rows of all Y or all N. Le~ us
consider i;his bable:

i

Applications of rules 1 and 2 imply indifference bel~ween
the various rows for l)he first diseriminatior~. However, if
condition 1 or 3 is chosen first, it is apparent that the re-
sultant subtable will contain rows of all N and all Y, re-
spectively. On tile other hand, an initial choice of C2 does
not lead to such a fortuitous state and indeed the resultant
network requires 6 branch points as compared to 5 if C1
or Ca is used first. In order to state a rule which will allow
us to employ a "look ahead" strategy such as this, some
terms must be defined.

A condition row C~ is made up of two sets of elements,
those with Y or I (tile positive elements) and those with
N or [entries (the negative elements). C~ is said to be
complemented by Cj if the negative rules in C~ have only
Y or only N elements in Ci and/or the positive rules in
C~- have only Y or only N elements in Ci. Furthermore, the
number of complementary rules will be known as tile
count of C~ with respect to Cj (Co-).

As an example, consider t, he following illustrations:

negative e lemenls
y y I N 1

I_ - - J
positive e lements

I < II 21_l_E_d

As tile positive elements in Ci have only Y elements in the
corresponding rules of C¢, Cj eomplemenl~s C~. As this
match occurs for two rules, C~j = 2.

We may now stal~e a third step which may be taken
after the first two lead to seeming indifference between
several rows.

Step 3. Discriininate on the condition row which maximizes C&
where C& equals ~}~ Cij - C . and where n equals the
number of conditions in tam table,

Translation of the following table illustrates the applica-
tion of the steps:

1 2 3 4 l

Step 2 clearly indicates that condition I should be used
for tlm entire table.

C, n - E
Y

1 2 3 4

2 Y N F I N
3 Y 1 N Y

,i N Y N N

5 Y Y Y N

Step 1 tells us that the key row should be 2, 4 or 5. Fur-
thermore:

(2S2 = C2,8 -4- C2,4 + C2,5 =- 0 + 2 -~- 2 = 4

CS4 = C 4 , 2 + C4,a + C4,5 = 1 + 0 + 1 = 2

CS~ = C~,2 + C5,a + C~,4 = 1 + 1 + 1 = 3.

Step 3 dictates that C2 be used for the next discrimination.

(4

31 ~-3 I Y

 444 14Y

\
E- y Rule 2 C~

n / ' >
n (¢ r, _~___ E E - - C s Rule 2 E "5 "a

Showing the complete network, we have:

C2
Y "n

E n ; E . n } n E

5

- Y E Ca

Thus far, we have stated two procedures for deriving
programs from decision tables. The number of branch
poml, s in a network derived via the successive parsing
procedure is less than or equal to the number required
when the sequential examination of rules is performed. (It
is equal only in the eases of a i-rule table or a 2-rule table
with only a single nondifferent entry in one of the rules.)
However, except in the ease noted, the successive parsing
technique requires a greater number of branch points than
the number of conditions in the table. This latter fact leads
us to examine a third technique which might yield better
results with respect to storage requirements.

VMume 8 / Number 6 / June, 1965 Communications of the ACM 387

Execution of this third technique proceeds in two

phases.
1. Test each condition and build a mask word reflecting

satisfaction (1, 0) or failure (0, 1) of each in a 2-bit entry•
2. Match this mask word against a set of words which

are derived from the rules where a 1, 0 denotes a Y ele-
ment, 0, 1 an N element and 1, 1 an [element.

1 ~ actions associated with the first rule found to match
the condition-state word will be performed.

This procedure, as has been noted previously, minimizes
the number of branch points in the network. However,
this is not as valid a measure of storage usage as t~ is m
the previous cases. It is cleat" that the mask words asso-
ciated with each rule must be present at object time, as
well as the routine for matching them. I t is necessary to
evaluate these additional storage requirements further, to
determine their importance as compared to additional
branch points.

Using the IBM System/360 as a vehicle, the absolute
mininmm marginal storage requirement imposed by a
branch point is 4 bytes, i.e.:

CR A, B

BC X'8'

Even this sequence displaces enough storage to aceonuno-
date the entries of a 4 X 4 table. When one considers the
evaluation of expressions, rather than simple operands
which are assumed to be in registers, it is clear that the
storage required for a single branch point could easily be
sufficient to accommodate the masks necessary for a large
table. The storage required for the interpretive routine
must be considered also; however, a single, common sub-
routine will be shared by all tables in a program.

This technique seems to offer art advantage in terms of
storage usage; however, the dimension of execution time
must also be considered. The first phase, it will be re-
called, requires testing all of the conditions in the table---
this would be the worst possible ease were the parsing ap-
proach used. For a presentation of an algorithm which,
given relative frequency of success for each rule, purports
to develop a parsing network of optimal execution time,
the reader is referred to [15].

Execution time is also adversely affected by the match-
ing routine. Ordering the rules on expected relative fre-
quency of success in some part enhances execution times.

The final consideration in evaluating these procedures
is the time required for translation from table to program.
There can be no question that building rule masks and a
serial set of condition tests is easier than applying the
parsing procedure which has been described, whether by a
human programmer or an automatic translator. Processing
into a matching program would seem to be slightly simpler
than applying the first approach described and would re-
quire less time due to the fact that a smaller program
would result.

Summary. The various approaches may be sum-

3 8 8 C o m m u n i c a t i o n s o f t h e A C M

marized as follows:

3. A m b i g u o u s a n d Extended-entry Tables

Thus far, the discussion has assumed only limited-entry
tables without ambiguity. A table is said to be ambiguou.s
if it is logically possible tha t a set of conditioa states occur
such that more than one rule be satisfied. I t is important
to note that a table may be ambiguous even though tile
nature of the conditions being eested implicitly resolve the
problem. For example,

is ambiguous even though the systems analyst might know
that C1 and C2 cannot simultaneously be satisfied. An am-
biguous table is recognized to be one that contains either
redundant or contradictory rules. For a more rigorous
discussion, see [12].

At this point, one might reasonably question the neces-
sity for being concerned with ambiguous tables. As a
matter of fact, these are of paramount importance due to:

(1) the common ease where the systems analyst is
aware of implicit information in the problem, and is
burdened by making it explicit in order to eliminate
ambiguity;

(2) the fact that extended-entry tables are essentially
equivalent to ambiguous, l imited-entry tables, and may
easily be mapped into that form.

For handling extended-entry tables, we utilize the t, ech-
nique of reducing the problem to one which has bce~l
solved previously. An extended-entry condition takes on
one of the following formats:

Stub Entry

1. operando o p e r a t o r o p e r a n d l , " " operand, ,
2. operand0 o p e r a t o r ope rand i , . • ", opera, tot

operand, ,
3. operando vs. ope rand i opera tor~, - - ", operator, ,

These three formats may be transformed as follows:
1. Create a separate condition for each entry opermtd

by combining operand0, the operator, and the appropriate
entry operand in the stub portion, and by entering a Y i~
the corresponding rule. All other rules arc indifferent with

respect to this condition.
2. Same as for 1, but bring the entire operator/operand

pair to the stub portion.
3. Same as for 1, but bring the operator into the stub.

To illustrate, we transform the table:

M , N - < - -

V o h H n e 8 / N u r n b e r 6 / J u n e , 1965

trite;

Notice tim(we have transformed the extended_entw
table into an ambiguous, limited-entw table. Making use
of the definilions of the operators and possible equivalence
of the operands, we may be able to condense the resultant
table in a second phase, l)oi ng so, our example simplifies to:

ii ii-i I

IA ; i / t Iv1-j

 i>:k g227 i77 1
We may now consider the effect of ambiguity on the

procedures described it, the preceding section. In the case
of a parsing technique, a subtable evolves which contains
only one condition and is of a form other than:

or -~7

While lhis technique readily recognizes ambiguity, it is
unable to cope with it.

The other procedures described offer no such simple test
for recognizing ambiguity; however, they are able to suc-
cessfully process ambiguous tables. This capability results
front the fact that the rules are examined independently
and the first one which is satisfied is accepted; hence the
ambiguous situation is resolved.

A two-phase translation to ambiguous, limited-entry
form enables extended-entry tables to be processed by the
same procedure as limited-entry tables for the preparation
of programs. Due to the ability to resolve ambiguity, sim-
plicity a:td speed of translation, and storage economy, the
mask-matching technique seems very desirable except in
the ease where execution time is critical and one of the
rules in the table is highly dominant in terms or relative
frequeney of success pet' number of nonindifferent ele-
lltellts.

4. Deeislon Table Languages

Most activity in the area of languages to date has been
in translating tables inlo some intermediate language
(ti'ORTRAN, COBOL, et(,..) and allowing the standard com-.
pilers to carry the process of machine language. This
philosophy has prewuled as all work: to date has been in-
forn:ative an(l experimental, and lherefore the nlost ex-
pedient imp/enmntation of a processor was sufticient.

Volume 8 / Number 6 / .June, 1965

Justification for an independent decision-table language
could spring from any of several sources such as an in-
crease in object time efficiency, reduced compile time or
most important, the need for language features or struc-
ture which do riot lend themselves to implementation
l:hrough a secondary language. Object time e~ticiency de-
pends primarily upon the intermediate language processor,
and it would seem that it could be controlled at that level.
The costs of two-stage translation may be important, but
are diminished by trends toward monitored operations arid
the residence of programming systems on nonsequential
devices. Finally, work to date has not produced definitions
of language features or of a general language philosophy
which cannot be implemented via any of several current
programming languages.

The above seems to indicate that no compelling reason
exists to implement a decision-table processor which is
independent of an intermediate language. The choice of
the intermediate language influences many facets of the
decision table language such as variable-naming conven-
tions, statement referencing, allowable action formats,
etc.; however, the general nature of the decision-table
language is relatively insensitive to this choice.

Implementation via an intermediate language does raise
one major question as to the philosophy or nature of the
decision-table language, that of table/intermediate lan-
guage dominance. It is possible to formulate a useful
language where the progralnmer works entirely in terms of
decision tables. He is isolated from the intermediate
language per se to the greatest extent possible, and, when
forced to use certain statements, he may regard them as
isolated features of the decision-table language. The al-
ternative approach is to view the ability to process decision
tables as an adjunct of the intermediate language, with the
ability to freely utilize the features of both forms in solving
a problem. In this latter ease, neither the intermediate
language nor decision tables are dominant, but they are at
the same level.

The table-dominant approach would stern to offer ad-
vantages in terms of ease of learning, complete problem
orientation, etc. ttowever, is this a truly valid observation?
Would it not be possible to present a well-chosen subset of
a nondominant language and obtain the same simplifying
advantages?

More important, it must be recognized that relatively
few computer jobs lend themselves to formulation entirely
in terms of decision tables. It may be possible to broaden
the applicability of a table-dominant language by forcing
the formulation of certain other jobs to conform to deci-
sion-table conventions via awkward and urmsual use of
the language (e.g. unconditional tables). On the other
hand, a very large class of jobs exist wherein certain por-
tions are well suited to formulation as decision tables (flow
of control, logic, data validity, etc.), and other portions
best stated as decision tables (assuming that it is possible
to do so).

It is in the latter area that primary justification for a
processor exists and where a nondominant approach is

C o m m u n i c a t i o n s o f t i le ACM 389

dictated. I t would seem tha t the table-dominant approach
great ly restricts the range of usefulness of a decision table
language by "hiding" capabilities and presents no com~
pelling advantages in terms of language power or processor

implementat ion ease.
I n addit ion to considerations such as those above,

several table-oriented features should be included in a de-
cision table language, l~ollowing is a brief description of
several of the more impor tant facilities, many of which
have been postulated or implemented elsewhere.

1. The programmer should have the option of ranking
storage utilization, execution time and translation time in

order of preference.
2. The programmer should have the option of causing

the second phase of a parsing procedure to be deleted, i.e.,
accept a rule after all, and then one rule has been elimi-
nated. This implies no error-else actions and results in

economies in every aspect,.
3. Statistical analysis aids should be included in the

language, ti'or example, the programmer should be able to
cause a count to be kept of the frequency of acceptance of
each rule. These figures are necessary as input to the com-
piler if execution t ime is to be minimized, and they could
be revised periodically via such a tally feature. In addition,
statistics on the states of individual conditions might be
of interest to the systems analyst.

4. Another class of statistics which would be of use to
the systems programmer is concerned with the frequency
of utilization of various language features and options.
This type of information is seldom available in representa-
t ive form and great effort is spent to estimate it. With the
advent of monitored operation, this information is easily
gathered and maintained and is clearly of use with regard

to all p rogramming systems, not n~erely [,o decision table

languages.

Ii.ECEIIV~]D Oc'l'OJ~.:[~, 1964:; t~ICV*St:D l~'tcm~u~v~% 1965

REFER.Ii;NCES

1. ARI~iERDING, G.W. FOR.TAB: a decision table lal~guage for
scientific computing applications. Mere. II.M-330B-PR,
Rand Corp., SaHt~ Moniea, Sept. 1962.

2. CANTRI~;LL, H. N., KIN<;, J., AN'D K[N,:~, I p. ~]. [l. l~ogie struc-
ture tables. Comm. A C M 4 (June 1951), 272 275.

3. CODASYL Systems Group. DETAIl-X, preliminary specifi-
cations for a decision table structured langut~ge. Sept. 1962.

4. CODASYL Systems Group. Decision table tutorial using
DETAB-X. Rev. ed., Oct. 1962.

5. l)IXON, P. Decision tables and their application. Com.p~l.
A~ttomat., (Apr. 1964).

6.]i]GLEr~, J. F. A procedure for converting logic table eondi-
lions into an efficient sequence for test instructions. Comm.
A C M 6 (Sept. 1963), 510-514.

7. MONTALBANO, M. Egler's procedure refuted. (Letter to the
Editor) Comm. A C M 7 (Jan. 1964), 1.

8. I~;WXNS, O.Y. Advanced analysis method for integrated elec-
tronic data processing. IBM (fen. Inform. Man. ~F20-8047.

9. GLANS, T. B., ANt) GRAD, B. Tabular descriptive language.
IBM Teeh. Itep. No. 2A5, Jan. 1962.

10. GRAD, B. Tabular form in decision logic. Dalantatior~ (July
1961).

11. KAVANzkGH, T. F. TABSOL--a fundamental concept for
systems design. Proe. 1960 Eastern Joint Comput. CenL

12. MONTALBANO, M. Tables, flow eh~rts, and program logic.
I B M ~gyst. J. (Sept. 1962).

13. N~CKERSON, R. c. An engineering applieatio~ of logic-
structure tables. Comm. A C M 4 (Nov. 19{il), 51(i--520.

14. POLLACK, S.L. Analysis of decision rules in decision tables.
Mem. R.M-3669-PR., Rand Corp., Santa Monie:~, ~'[ay 1953.

15. - - . Conversion of limited-entry decision tables to com-
puter programs. Mem. ILM-4020-PR., R.and Oorp., Santa
Moniea, May 1954.

Do You Know That COMPUTING REVIEWS KWIC INDEX Lists

293 SEPARATE ARTICLES

o n

BUSINESS AND MANAGEMENT DATA PROCESSING?

These are referenced under the Key

M G N T D P

in one continuous list on pages 219-220.

All aspects of Management and Business are covered:

M a n u f a c t u r i n g • M a r k e t i n g • M e r c h a n d i s i n g
F i n a n c i a l • D i s t r i b u t i o n • T r a n s p o r t a t i o n • C o m m u n i c a t i o n

R e s e a r c h

CR K W I C I N D E X IS A V A I L A B L E F R O M

Association for Computing Machinery, 211 East 43 Street, New York, N. Y. 10017, $15.00

390 Communicat ions of the ACM Volume 8 / Number 6 / June, 1965

