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Several translation procedures for the conversion of deci-
sion tables to programs are presented and then evalvated
in terms of storage requirements, execution time and compile
time. The procedures are valuable as hand-coding guides or as
algorithms for a compiler, Both limited-entry and extended-
entry tables are analyzed. In addition to table analysis, the
nature of table-oriented programming languages and fea-
tures is discussed. |t is presumed that the reader is familiar
with the nature of decision tables and conventional defini-
tions.

1. Introduction

This paper is concerned with the production of computer
programs from decision tables. It is assumed that the
reader already has a knowledge of the conventions used in
constructing them. For an excellent deseription of decision
tables, their advantages and application areas, the reader
is referred to [3].

Decision tables have been shown to be an effective de-
vice for the communication of job definitions between per-
sons both within and outside of the data processing area.
In addition, they may be an extremely useful aid in com-
municating with a computer, either via an automatic pro-
gramming system or as a hand-coding tool.

In hand coding, a decision table is somewhat analogous
to a flowchart. However, in ease of converting complex
systems of conditional rules to efficient programs, insuring
completeness, and guiding program organization, decision
tables seem to offer significant advantages. For an example
of such a complex program, and hand-coding experience,
see [13].

Regardless of the method for translation, orderly pro-
cedures (algorithms) are needed in order to achieve effi-
cient programs from decision tables. Possible criteria for
the efficiency of such procedures are translation time,
storage requirements of the programs produced, and exe-
cution time of the programs produced.

Three approaches to the conversion of conventional,
limited-entry tables are presented in Section 2 of the
paper. They are evaluated in terms of the criteria men-
tioned above. The next seetion examines the more gener-
ally useful cases of limited-entry tables, where ambiguity
18 allowed, and that of extended-entry tables, which are
shown to be identical for purposes of programming. In the
final section decision-table language structures and fea-
tures are discussed.

All of the techniques presented are applicable either for
manual or automatic programming. Iormal proofs of
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optimality are not included (seldom is optimality asserted);
however, an attempt has been made to illustrate the rea-
soning behind each decision or assertion.

2. Limited-entry, Nonambiguous Tables

This section deals exclusively with the processing of con-
ventional limited-entry tables. The term nonambiguous
merely infers the usual restriction against redundancy or
contradiction between rules. The concept of ambiguity is
discussed in more detail at the beginning of Section 3.

In attempting to devise a procedure for the conversion
of limited-entry tables to computer programs, let us con-
sider the example shown in Figure 1.

Rules
r 2 3 F
L' N| N Y
Conditions | 2 | N I‘ Y
3IN|Y | N
e 1

A technique yielding a network that accurately reflects
the logic specified in the table is testing the rules one at a
time until one is found where all conditions are satisfied.
At that point, the actions associated with that rule may
be exccuted. This procedure might result in the following
flowchart from Figure 1.
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To minimize execution time, the rules would be ordered
on relative frequency of occurrence per number of non-
indifferent entries prior to examination. It should be noted
that the entire network might be transversed in choosing
a rule.

In general, this technique would result in a network
which has as many branch points as there are nonindiffer-
ent entries in the table. A procedure which would result in
less branch points would save computer storage.

Let us try a different general approach. Rather than
examining the rules individually, we may test the various
conditions in order, which eliminates rule(s) from further
consideration. This philosophy should be more efficient
with respect to storage, as a single test can eliminate
several rules, whercas with the previous method several
tests arc often needed to examine a single rule. Further-
more, the outcome of early tests is “forgotten” when
looking at other rules.

To illustrate this general approach, consider again
Figure 1. If condition 1 is tested and found to be true,

Communications of the ACM 385



rules 1 and 2 may be eliminated from further considera-
tion. In either case Ii (error or else) is still possible. In
making a test such as just described, we have parsed
Figure 1 into two subtables by discriminating on the con-
dition in row 1, the key row. This step may be symbolized
as follows:

I 2 3

1| N|N|Y}

21N 1Y

3IN| Y IN

)

3 1 T
21Y 2N T
3N 3N |1

or more simply:
A
Y n

An entire network may be constructed by repeating this
process for each subtable produced, until all subtables
consist of only one rule (and possibly E). At the point
where only one rule has not been eliminated, a second
phase must be entered in order to explicitly test all previ-
ously untried conditions due to the possibility of an E-
condition. Continuing with our example, the following
network might result:

@ denotes a test in the second phase

This network with only five branch points, requires less
storage than that depicted previously; however, it was
constructed in a rather arbitrary fashion. For example,
why test condition 1 first rather than 2 or 3?

We must devise an orderly procedure for choosing the
test condition which should be used in parsing a given
table in order to yield a network with a minimum number
of branch points. If it is not clear that an arbitrary choice
will not suffice, consider the network which might have
resulted from Figure 1 if (', had been first:
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1t is not surprising that this network is less efficient
(seven branch points) than the first, because a certain rylg
(2) was indifferent to the state of the first condition tested
and hence could not be eliminated from further considers-
tion regardless of the result of the tost of .

In general, if we parse a table on a given condition (C})
and

n = number of rules in the table,

m = number of conditions in the fable,

y = number of ¥ entries in C,
@ = number of N entries in (4,
7 = number of I entries in ('},

two subtables result, each having m—1 conditions and
x-+7 and y-+7 rules, respectively. Clearly, if we can always
discriminate on a condition which minimizes the value of 4,
smaller subtables, and hence more eflicient networks,
result. Therefore, the first step in our procedure for choos-
ing the key condition is as follows:

Choose the key condition from the set of rows with the
minimum number of indifferent entries.

Step 1.

Perhaps an arbitrary choice from this set would suffice;
however, in considering the following example we see that
this is not the case:

1 2
1Y
21V Y

Both €} and (' satisfy rule 1, as neither contains any in-
different entries; however, either of the following networks
may be derived if only step 1 is followed.

(o (" F
Y/ n
2 S J
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11 y / n
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The network on the right requires less storage. It is obvious
that by testing a condition with all ¥ or N entries, we may
save branch points in subsequent second phase portions of
the network. In a larger table this saving clearly is even
greater. Therefore, our second step might be:

If one of the rows contains all ¥ or all N entries, dis-
criminate on that condition,

Step 2.

We now have two steps which lead to efficient choices
of key rows. It should be noted that these may be applied
by looking at the conditions individually. In order t0
derive a more efficient network, it is necessary to tak'e
cognizance of the relationships between the various condi-
tions as well as the nature of the conditions when cob-
sidered individually. Tt is in overlooking this necessity
that many of the “optimal” procedures described in the
literature fail.

In formulating a third step, we want to parse the ta'ble
in a manner which will enhance the possibility of be1ng
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able to apply rule 2. Our goal is to parse the table so that
future subtables will contain rows of all ¥ or all N. Let us
consider this table:

Applications of rules 1 and 2 imply indifference between
the various rows for the first discrimination. However, if
condition 1 or 3 is chosen first, it is apparent that the re-
sultant subtable will contain rows of all N and all ¥, re-
spectively. On the other hand, an initial choice of 'y does
not lead to such a fortuitous state and indeed the resultant
network requires 6 branch points as compared to 5 if ¢}
or Cy is used first. In order to state a rule which will allow
us to employ a “look ahead” strategy such as this, some
terms must be defined.

A condition row C; is made up of two sets of elements,
those with ¥ or I (the positive elements) and those with
N or I entries (the negative elements). C; is said to be
complemented by (' if the negative rules in C; have only
Y or only N elements in C; and/or the positive rules in
Cihave only ¥ or only N elements in ;. F urthermore, the
number of complementary rules will be known as the
count of C; with respect to C; (C)).

As an example, consider the following illustrations:

negalive elements
G Y YT TN

posilive elements

o Iy 17T «w
(/jj Yy Yi N

As the positive elements in C'; have only ¥ elements in the
corresponding rules of €, C; complements C;. As this
match oceurs for two rules, C';; = 2.

We may now state a third step which may be taken
after the first two lead to sceming indifference between
several rows.

Step 8. Discriminate on the condition row which maximizes CS;
where C8; equals Y%, Ci; — Cy and where % equals the
number of conditions in the table.

Translation of the following table illustrates the applica-
tion of the steps:

1 2 3 4
v v vy
Yy N[ V| N
v |~y
N v~ w
yiv|v|w]

Step 2 clearly indicates that condition 1 should be used
for the entire table.
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Cl g
Y
2 3 4
2| Y N|Y|N
3| Y I|{N|Y
1 | NI Y |N|N
S| Y YV YN

Step 1 tells us that the key row should be 2, 4 or 5. Fur-
thermore:

CSas = Cog+ Cou+Cos=0-+2+2 =4

CSy = Cio+Cis+Cis =14+0+1=2

CSs = Cso+Cip+Cs0=1+1+1=3.
Step 3 dictates that €, be used for the next discrimination.

C
4 "
1 3 2 4
3| Y|N 3{I)Y
4| N|IN 4| YN
| Y |Y 5| Y N
E-Y (])'1 Rule 2 Cy

g FERN
E—"—¢ Rule2 g2 2
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K

y v ij
y
G pA E
y 2 n
R, R,
Showing the complete network, we have:
¢—2—F

|

C
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Y y

Cg‘*y—E

Cy

Thus far, we have stated two procedures for deriving
programs from decision tables. The number of branch
points in a network derived via the successive parsing
procedure is less than or equal to the number required
when the sequential examination of rules is performed. (It
1s equal only in the cases of a 1-rule table or a 2-rule table
with only a single nondifferent entry in one of the rules.)
However, except in the case noted, the successive parsing
technique requires a greater number of branch points than
the number of conditions in the table. This latter fact leads
us to examine a third technique which might yield better
results with respect to storage requirements.
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Fixecution of this third technique proceeds in two
phases.

1. Test each condition and build a mask word reflecting
satisfaction (1, 0) or failure (0, 1) of each in a 2-bit entry.

9. Match this mask word against a set of words which
are derived from the rules where a 1, 0 denotes a ¥ ele-
ment, 0, 1 an N element and 1, 1 an [ element.

The actions associated with the first rule found to match
the condition-state word will be performed.

This procedure, as has been noted previously, minimizes
the number of branch points in the network. However,
this is not as valid a measure of storage usage as it is in
the previous cases. It is clear that the mask words asso-
ciated with each rule must be present at object time, as
well as the routine for matching them. It is necessary to
evaluate these additional storage requirements further, to
determine their importance as compared to additional
branch points.

Using the IBM System/360 as a vehicle, the absolute
minimum marginal storage requirement imposed by a
branch point is 4 bytes, i.e.:

CR A, B
BC X'8

Tiven this sequence displaces enough storage to accommo-
date the entries of a 4 X 4 table. When one considers the
evaluation of expressions, rather than simple operands
which are assumed to be in registers, it is clear that the
storage required for a single branch point could easily be
sufficient to accommodate the masks necessary for a large
table. The storage required for the interpretive routine
must be considered also; however, a single, common sub-
routine will be shared by all tables in a program.

This technique seems to offer an advantage in terms of
storage usage; however, the dimension of execution time
must also be considered. The first phase, 1t will be re-
called, requires testing all of the conditions in the table—
this would be the worst possible case were the parsing ap-
proach used. TFor a presentation of an algorithm which,
given relative frequency of success for each rule, purports
to develop a parsing network of optimal execution time,
the reader Is referred to [15].

Execution time is also adversely affected by the match-
ing routine. Ordering the rules on expected relative fre-
quency of success in some part enhances execution times.

The final consideration in evaluating these procedures
is the time required for translation from table to program.
There can be no question that building rule masks and a
serial set of condition tests is easier than applying the
parsing procedure which has been described, whether by a
human programmer or an automatic translator. Processing
into a matching program would seem to be slightly simpler
than applying the first approach described and would re-
quire less time due to the fact that a smaller program
would result.

Summary. The various approaches may be sum-
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marized as follows:

4 Vardes 2

2 2 '

3 1 3 J
|

1 3 1

3. Ambiguous and Extended-entry Tables

Thus far, the discussion has assumed only limited-entry
tables without ambiguity. A table is said to be ambiguous
if it is logically possible that a set of condition states ocour
such that more than one rule be satisfied. It is important
to note that a table may be ambiguous even though the
nature of the conditions being tested implicitly resolve the
problem. For example,

Gyl ly
Gyl Y

is ambiguous even though the systems analyst might know
that € and C cannot simultaneously be satisfied, An am-
biguous table is recognized to be one that contains either
redundant or contradictory rules. For a more rigorous
discussion, see [12].

At this point, one might reasonably question the neces-
sity for being concerned with ambiguous tables. As a
matter of fact, these are of paramount importance due to:

(1) the comumon case where the systems analyst is
aware of implicit information in the problem, and is
burdened by making it explicit in order to climinate
ambiguity;

(2) the fact that extended-entry tables are essentially
equivalent to ambiguous, limited-entry tables, and may
easily be mapped into that form.

For handling extended-entry tables, we utilize the tech-
nique of reducing the problem to onc¢ which has been
solved previously. An extended-entry condition takes on
one of the following formats:

Stub Entry
1. operand, operator operand;, --- operand,
2. operand, operator operand,, - - -, operator
operand,
3. operand, vs. operand, operator,, - - -, operator,

These three formats may be transformed as follows:

1. Create a separate condition for each entry Opeff‘md
by combining operand,, the operator, and the apl)l'ol'?”?tc
entry operand in the stub portion, and by entering 2 Y, n
the corresponding rule. All other rules are indifferent with
respect to this condition.

2. Same as for 1, but bring the entire operator/ operand
pair to the stub portion.

3. Same as for 1, but bring the operator into the st

To illustrate, we transform the table:

ub.

A =B > # B
M,N 2 < -
X< Y - w
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into:

Notice that we have {ransformed the extended-entry
table info an ambiguous, limited-entry table. Making use
of the definitions of the operators and possible equivalence
of the operands, we may be able to condense the resultant
table in a second phase. Doing so, our example simplifies to:

We may now consider the effect of ambiguity on the
procedures described in the preceding section. In the case
of & parsing technique, a subtable evolves which contains
only one condition and is of a form other than:

While this technique readily recognizes ambiguity, it is
unable to cope with it.

The other procedures described offer no such simple test
for recognizing ambiguity; however, they are able to suc-
cessfully process ambiguous tables. This capability results
from the fact that the rules are examined independently
and the first one which is satisfied is accepted; hence the
ambiguous situation is resolved.

A two-phase translation to ambiguous, limited-entry
form enables extended-centry tables to be processed by the
same procedure as limited-entry tables for the preparation
Of‘p'rograms. Due to the ability (o resolve ambiguity, sim-
plicity and speed of translation, and storage economy, the
mask-matching technique seems very desirable except in
the case where execution time is critical and one of the
rules in the table is highly dominant in terms or relative
fI'CQ1L1011(:y of success per number of nonindifferent ele-
ments,

4. Decision Table Languages

. Most activity in the area of languages to date has been
- hranslating tables into some intermediate language
(1 ORTRAN, Cosor, ete.) and allowing the standard com-
pllfws to carry the process of machine language. This
phlloso’phy has prevailed as all work to date has been in-
fOFI}latlve and experitental, and therefore the most ex-
pedient, inplementation of a processor was suflicient.
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Justification for an independent decision-table language
could spring from any of several sources such as an in-
crease n object time efficiency, reduced compile time or
most important, the need for language features or strue-
bture which do not lend themselves to implementation
through a secondary language. Object time efficiency de-
pends primarily upon the intermediate language processor,
and it would seem that it could be controlled at that level.
The costs of two-stage translation may be important, but
are diminished by trends toward monitored operations and
the residence of programming systems on nonsequential
devices. Finally, work to date has not produced definitions
of language features or of a general language philosophy
which cannot be implemented via any of several current
programming languages.

The above seems to indicate that no compelling reason
exists to implement a decision-table processor which is
independent of an intermediate language. The choice of
the intermediate language influences many facets of the
decision table language such as variable-naming conven-
tions, statement referencing, allowable action formats,
etc.; however, the general nature of the decision-table
language is relatively insensitive to this choice.

Implementation via an intermediate language does raise
one major question as to the philosophy or nature of the
decision-table language, that of table/intermediate lan-
guage dominance. It is possible to formulate a useful
language where the programmer works entirely in terms of
decision tables. He is isolated from the intermediate
language per se to the greatest extent possible, and, when
forced to use certain statements, he may regard them as
isolated features of the decision-table language. The al-
ternative approach is to view the ability to process decision
tables as an adjunct of the intermediate language, with the
ability to freely utilize the features of both forms in solving
a problem. In this latter case, neither the intermediate
language nor decision tables are dominant, but they are at
the same level.

The table-dominant approach would seem to offer ad-
vantages in terms of ease of learning, complete problem
orientation, etc. However, is this a truly valid observation?
Would it not be possible to present a well-chosen subset of
a nondominant language and obtain the same simplifying
advantages?

More important, it must be recognized that relatively
few computer jobs lend themselves to formulation entirely
in terms of decision tables. It may be possible to broaden
the applicability of a table-dominant language by forcing
the formulation of certain other jobs to conform to deci-
slon-table conventions via awkward and unusual use of
the language (e.g. unconditional tables). On the other
hand, a very large class of jobs exist wherein certain por-
tions are well suited to formulation as decision tables (flow
of control, logie, data validity, etc.), and other portions
best stated as decision tables (assuming that it is possible
to do so0).

It is in the latter area that primary justification for a
processor exists and where a nondominant approach is
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dictated. It would seem that the table-dominant approach
greatly restricts the range of usefulness of a decision table
language by “hiding” capabilities and presents no com-
pelling advantages in terms of language power or processor
implementation ease.

In addition to considerations such as those above,
several table-oriented features should be included in a de-
cision table language. Following is a brief description of
several of the more important facilities, many of which
have been postulated or implemented elsewhere.

1. The programmer should have the option of ranking
storage utilization, execution time and translation time in
order of preference.

2. The programmer should have the option of causing
the second phase of a parsing procedure to be deleted, i.e.,
accept a rule after all, and then one rule has been elimi-
nated. This implies no crror-else actions and results in
economies in every aspect.

3. Statistical analysis aids should be included in the
language. For example, the programmer should be able to
cause a count to be kept of the frequency of acceptance of
each rule. These figures are necessary as input to the com-
piler if execution time is to be minimized, and they could
be revised periodically via such a tally feature. In addition,
statistics on the states of individual conditions might be
of interest to the systems analyst.

4. Another class of statistics which would be of use to
the systems programmer is concerned with the frequency
of utilization of various language features and options.
This type of information is seldom available in representa-
tive form and great effort is spent to estimate it. With the
advent of monitored operation, this information is easily
gathered and maintained and is clearly of use with regard

to all programming systens, not merely to decision tabje
languagces.
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