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INTRODUCTION 
Classical induction algorithms such as factor analysis, 
multiple regression, and early forms of cluster analy- 
sis have have been employed successfully to reveal 
a limited set of structures for particular classes of 
data. Even contemporary forms of cluster analysis 1 
and other tree-growing processes 2,3,4 are restricted 
either in the structure to which they can respond or 
in the type of data to which they apply, or both. 
The goal of this project is to improve the power and 
scope of computer routines that search for structure 
in a data base. IDEA (Inductive Data Exploration 
an.d Analysis) is a computer program that detects 
and represents inherent structure in multi-variage 
data. 

When the structure or pattern in data is poorly 
defined and specified, man's experiences, hunches, 
and intuitions often enable him to proceed where exist- 
ing pattern-detecting algorithms fail. To overcome the 
limitations and restrictions of pure machine induction, 
we are providing an opportunity for interplay between 
the investigator's judgment about and knowledge of 
his data and the computation power of a time-shared 
computer. 

To this end, the IDEA program is designed either 
to run in an automatic mode or to allow the investi- 
gator to intercede at each major decision in the analy- 
sis. At each such juncture he is presented with infor- 
mation that permits him to concur or override a com- 
puter decision before the program continues to the 
next major decision. In addition, IDEA has two other 
distinguishing features: (1) Heuristic computational 
procedures are used for those cases where the com- 
binational aspects of the analysis would require ex- 
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tensive computations, and (2) heuristics are selec- 
tively used for different types of data, enabling IDEA 
to operate on a mixture of nominal (categorical), 
ordinal (ranked), and interval- or ratio-scaled measure- 
ments. 

The IDEA approach 

Classical statistical induction assumes that any 
given value of the dependent variable can best be 
predicted by adding together weighted contribul~ions 
from several independent variables, from transfor- 
mations of several independent variables and/or from 
interactions (products) of two or more independent 
variables. In general every component is employed 
in predicting the dependent variable in a uniform.way 
for all of the data points. In those cases where in- 
traregional differences are found (usually by visual 
inspection of scatter plots and regression lines), 
dummy variables are used to break the model into 
several specialized models, each of which is tailored 
to fit a specific region of the data space. 

Rather than explain the observed value of the de- 
pendent variable by summing the effects of several 
components, IDEA attributes variability in the de- 
pendent variable to the conjunction of several condi- 
tions, defined solely in terms of values of various 
independent variables, and not in terms of trans- 
formations of the original variables or in terms 
of interactions among the components. By using the 
conjunction of several conditions we are able to define 
several regions in the data space (i.e., the regions for 
which the conjunction of the conditions is "true"). We 
thus account for the observed dependent values by 
noting the region in which they occur. 

In other words, IDEA searches heuristically for 
regions which are well fit by a simple model in which 
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the dependent variable in that region is assumed to be 
constant with random error. In future versions we 
hope to search for regions where more complex 
models (e.g. regression) fit the data. Thus IDEA pro- 
duces a model which contains sub-models in each of 
the regions defined by the meta-model. 

The representational problem 

In addition to a unique means of discovering struc- 
ture in a data base, IDEA includes an unusual method 
for representing such structure: the decision tree. 
Methods for representing complex structures may be 
broken down into two categories: those that focus 
upon the observations (points in the multivariate 
observation space), and those that focus upon the 
variables (dimension of the space). 

The latter are exemplified by factor analysis and 
traditional cluster analysis. In these, structure is 
described in terms of vectors in a factor space, or in 
terms of clusters or variables of similar factorial 
composition. 

Our approach falls into the former class in that the 
decision tree that IDEA produces represents a parti- 
tion of the multivariate space into exhaustive, mutu- 
ally exclusive regions in which the data have homoge- 
neous values for the dependent variables. As an ex- 
ample, consider Figures 1 a and lb. 

i. %1,at :Ls yet,L" z~;'e7 (AGE) 

2. What is yo0r zcx? (SEX) 

3. What is your cducattl,n level? (EDUC) 

l~. }low often do you attend c h t l r c h ?  (RELTG) 

5. Dld you p~rtJci~te in the riots or not? (RIOT) 

Figure 1 (a) - Sample quest ionnaire  (5 variables). 

k 

attend lees attend more 
~er w e ~ t h ~ ]  onc~ "" ~-~ekth~n once 

male / - ~ J  ~ female 

under .-46 \ over 6- under 6 
~ y.ears year's years 

7l;. -I %-;< 

Figure 1 (b) - Sample decision tree with R I O T  as the dependent  
variable 

The entities in this data base are a set of question- 
naire responses obtained from residents of the Watts 
area of Los Angeles just after the 1965 riots. The 

variables are the questions asked in the questionnaire 
(Figure la). Thus each observation consists of the 
responses of a particular individual to all of the 
questions. Figure lb illustrates a decision tree that 
might represent the structure of this data base. This 
particular decision tree results from treating a selected 
variable, participation in the riot (RIOT), as the 
dependent variable. 

Each tree is made up of nodes (represented dia- 
grammatically as circles), leaves (shown as rec- 
tangles), and the paths between them. The name 
associated with each node denotes the particular 
independent variable being used to try to account 
for the observed values of the dependent variable. 
The labels beside the paths leading from each node 
specify the particular values of the independent vari- 
able at the node. These were found to predict the de- 
pendent variable as accurately as possible for those 
observations partitioned by the decision tree to the 
prior node. 

Note that these values partition the observations 
into exhaustive, mutually exclusive subsets. 

At some point on each path it will be decided not to 
continue to partition. The path will then be ter- 
minated by a leaf (rectangle). The numbers inside 
the leaf denote the frequency of the dependent vari- 
able values for the observations in the data base that 
have been partitioned or sorted to that leaf. 

For example, in Figure l b, where participation in 
the riot is the dependent variable, the observations 
sorted to node D (females who are not highly religious) 
are partitioned into two subsets depending upon 
whether the education level is 6-12 years or over, or 
under that. Of the 74 observations sorted to node D, 
31 are either under 6 or over 12 years in educational 
level. Leaf g tells us that 3 of the 31 were participants. 

If it were possible to account for all differences on 
this dependent variable, each leaf would represent 
either all participants or all nonparticipants (e.g., 
leaf d). In this particular tree, leaf c is highly heter- 
ogeneous and might better have been replaced by a 
node for further partitioning. 

In general, the decision tree is a graphic, easily 
understood representation of the data base structure, 
providing a simple description of many highly complex 
relationships. For instance, the relationship between 
two independent variables (x and y) and a nominal 
dependent variable (I or II), illustrated in Figure 2a, 
is summarized by the decision tree in Figure 2b. Many 
existing structure-seeking techniques would have 
difficulty in representing, let alone discovering, this 
relationship. 

In addition to representing structure in a given data 
base, the tree produced by IDEA can be used to esti- 
mate dependent variable values for the sampled popu- 
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lation. It may also be hypothesized as representing the 
true population structure, and this hypothesis can 
then be tested by additional research and analysis. 
The investigator may also gain insight while attempt- 
ing to explain some characteristic of the structure, 
such as a complex interaction or a radical change in 
the dependent variable distribution between succes- 
sive nodes. 
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Figure 2(a) - Hypothetical multivariate data base 
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Figure 2(b)--Decision-tree summary of Figure 2(a) 

The IDEA system 

The IDEA system consists of three components: 
(1) A means for the investigator to input, edit, trans- 
form, and reconfigure his data base (data preparation); 
(2) a library of machine induction heuristics (heuristic 
induction routines); and (3) an interactive package 
allowing the investigator to obtain critical data about 
the program's impending decisions, to alter heuristic 
parameters, to add or delete data, and to accept the 
machine's decisions or impose his own (interaction). 
These components are considered separately below. 

Data preparation 

Component 1 above is currently provided via an 
interface with" the TRACE 5 system. TRACE is 
a program with extensive capability to edit, reconfig- 

ure, and display multivariate data. In future versions 
we anticipate a requirement for a more continuous 
exchange between IDEA and TRACE. This capa- 
bility would be a portion of component 3 above. 

Heuristic induction routines 

Component 2 consists of a library of heuristics and 
a monitor system. The heuristic applied at a given 
point in the analysis may be chosen by the investigator 
as long as it is appropriate to the level of measurement 
of the variables involved. For  example, variables 
measured with a nominal scale (i.e., categorized) 
would be analyzed with statistics such as chi-square, 
which is appropriate to nominal scale data. Variables 
for which interval scale measurement is available 
could be analyzed with chi-square also. However, 
since this analysis would be insensitive to informa- 
tion involving order and distance, and since such 
information might be highly relevant to the under- 
lying structure, IDEA would suggest that the heuris- 
tics used be based on variance components. On 
the other hand, heuristics involving components 
of variance would not be used with categorical data 
(nominal scale) because valid interpretation of such 
analyses presupposes order and distance relations in 
the data that may have no empirical basis. 

Since we distinguish between the dependent and the 
independent variables measurement scales, con- 
siderations must be made separately for each. In 
terms of Stevens TM classification (nominal, ordinal, 
interval, ratio) there exists a 4 + 4 matrix of "cases" 
for which separate heuristics should be developed. 
Currently we have at least one operational heuristic 
appropriate to (i.e., which makes full use of all valid 
information concerning) the following cases: (a) 
nominal-nominal,* (b) nominal-ordinal, (c) nominal- 

interval, (d) interval-nominal, (e) interval-ordinal, 
and (f) interval-interval. These heuristics are also 
applicable to nominal-ratio, and interval-ratio cases, 
although with some loss in information. We are cur- 
rently seeking appropriate heuristics for these cases 
and for the four cases involving an ordinal dependent 
variable. 

In addition, we have developed alternate heuris- 
tics for those cases where a monotonic relation is 
known to exist between the dependent and indepen- 
dent variables, and this permits a reduction in the 
computation involved. Finally, we are also developing 
alternate heuristics for the nominal-nominal case in 
which we attempt to form parallel partitions instead 
of the sequential partitions discussed so far. Parallel 

*Dependent variable scale is listed first, independent variable scale 
second. 
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partitioning involves more than one independent vari- 
able at a node as the basis for partitioning, and, hope- 
fully, will complement sequential partitioning by 
being sensitive to aspects of underlying structure over- 
looked by the sequential mode. 

The goal of the heuristics implemented initially is 
to produce a highly significant chi-square in the case 
of a nominal dependent variable and to produce a large 
reduction in unexplained variance in the interval case. 
These two criteria in themselves represent heuristic 
or judgment decisions, and are chosen because of 
several properties. 

Our property is that they favor a partition into few 
subsets over a partition into many, even though the 
latter may yield a more precise estimate. While this 
property is pleasing when we are interested in a parsi- 
monious structure, it may be inappropriate in an in- 
ferential setting, such as estimation of the dependent 
variable or pattern recognition. In these cases a 

• heuristic which favors partitions into many subsets 
may be more useful (e.g., C L S -  l0 in Hunt7). 

A second property is that these criteria are suit- 
able for the discovery of any single valued functional 
relationship, again favoring the relatively simple. This 
property is mandatory in the analysis of complex data 
such as that in many practical estimation and pattern 
recognition problems, particularly when the problem 
is in fact difficult-  as when assumptions such as linear 
separability of classes or knowledge of underlying 
distributions cannot be made (e.g., Figures 2a and 2b). 

A third property is that these criteria also favor 
variables with strong main effects. However, when an 
interacting variable fails to have a significant main 
effect, the presence of a singificant interaction may 
not be discovered. While more complex heuristics 
could be designed to ferret out such occurrences, 
the investigator may be able to infer this state by 
observing structure of the tree produced. In such 
instances, human pattern recognition skills may be 
substituted for more complex programs. 

Since these heuristic decision criteria are them- 
selves the results of reasoned judgment, it is n o t  rea- 
sonable to expend computational effort to guarantee 
optimal partitions. Therefore, the procedures imple- 
mented are also purposely heuristic. They consider 
only subsets of the possible partitions of a given 
variable. At times they do not seek a proven optimum 
even within that subset. 

For illustrative purposes, we will describe the heu- 
ristic for the interval-interval case in greater detail. 

Prior to implementing this heuristic, several al- 
ternatives were considered and rejected. One was an 
algorithm to search exhaustively for an optimal 
solution. It was hoped that a lemma by Fisher s 

would make this computationally feasible, but such 
was not the case (although Fisher's lemma is used in 
step 3, below). Next, an attempt was made to discover 
an analytic solution in literature concerning the identi- 
fication of homogeneous strata in experimental design, 
but all this work imposed untenable restrictions as to 
underlying distributions. A third approach, that of 
embodying a one-dimensional special case of some 
existing cluster-seeking procedure (e.g., 9"1°, was ruled" 
out due to the restriction that the order of the obser- 
vations on the independent variable be respected 
(step 2, below). 

The dissatisfaction with the above approaches led 
to the decision to develop an estimate of the optimal 
partition by computing a function, the within groups 
sum of squares (WSS), of a random sample of the 
observations. This approach, the six steps of which 
follow, is analogous to forming an estimate of the 
height of the tallest person in a population by observ- 
ing the height of the tallest person in a sample. 

1. Select a random sample of size N (N being a 
specified parameter) from the data blocks sorted 
to the current node (if less than N observations 
exist, use all of them). 

2. Order these according to the value of their in- 
dependent variable. 

3. Find the minimum WSS for 2-, 3-, . . . .  M-way 
partitions of the dependent variable (M being a 
specified parameter), while respecting the order- 
ing of step 2. These will define partitions of the 
independent variable for the sample (call these 
n-way 'partitions Pn* and call the associated 
WSS, WSSn*). 

4. Find P*, which is the partition that minimized 
WSS~* 

N--'--~ (where Nn is a normalizing factor), to 

account for the value of n. 
5. Consider P*, P* with all partition points shifted 

down to the first unique independent value, and 
P* shifted similarly upward, as three candidates 
for the final choice. 

6. Select the one that minimizes WSS (this time 
computed for the dependent variable for all of 
the observations at the node). 

This procedure embodies as estimate of the parti- 
tion that minimizes the WSS of the dependent vari- 

This procedure embodies as estimate of the parit- 
tion that minimizes the WSS of the dependent vari- 
able for all data blocks at the node. 

Statements about the power and efficiency of this 
technique require a knowledge of the frequency distri- 
bution of the WSS of all possible partitions. Until 
an analytical or empirical description of the distribu- 
tion is made, the computational capacity of SDC's 
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Time-Sharing System will be used to determine the 
sample size (N). 

A similar situation arises when we attempt to arrive 
at normalizing factors for comparing partitions into 
different numbers of subsets. Here, in the estimation 
of the mean n-way WSS (WSSn) for the population of 
observations, we desire to compute the mean WSS for 
the sample. Evoking the central limit theorem, we 
know that the distribution of sample WSS means is 
normal around the population WSS mean, with known 
dispersion. 

Therefore, a sample technique to obtain an arbi- 
trarily precise estimate of WSSn as a normalizing fac- 
tor could be implemented. This procedure would pos- 
sibly yield different results than the current one of 
using the mean WSS of all partitions explicitly con- 
sidered for final selection. As this latter approach 
deals with a screened (biased) sample, it produces a 
lower normalizing factor. 

Interaction 

The interaction package allows the investigator to 
apply his knowledge of the theory in his field, the 
precision of his data, the characteristics of the various 
IDEA heuristics, and his pattern recognition skills 
in the structure-seeking process. Figure 3 demon- 
strates the flow of control between investigator and 
computer during analysis. 

- -  I n t e r a c t i v e  
. . . . . .  ~ a t o ~ t  t c  
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. . . . . . . . .  
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Figure 3 - Flow of control between investigator and computer 

Most interaction occurs at step 14 where, in addi- 
tion to a summary of the best partitions discovered 
(step 13), the investigator may request any infor- 
mation used by the heuristics in reaching the proposed 
decision. He may request detailed description of 
"good" partitions that the heuristics can discover 
for a specified variable, or of a given partition of a 
given variable. 

In addition, IDEA provides for displays of speci- 
fied variables. At present these include frequency 
distributions and contingency tables. We also intend 
to provide other plots, scatter diagrams, etc., with 
such aids as discriminant functions, regression analy- 
sis, iso-probability, and iso-distant curves derived 
under various assumptions. 

The investigator may use these displays to decide 
which of several options to exercise at each node. Cur- 
rent options include: accepting the heuristics decision, 
overriding with a partition or a leaf, selecting a new 
portion of the emerging structure to analyze, "backing 
up" to a previously processed node, or continuing in 
the automatic node for N nodes before allowing 
further interaction. 

S U M M A R Y  

In summary, this project is concerned with the 
development of an interactive package of heuristic 
computer-induction programs. This program package 
has been used in the analysis of several multivariate 
data bases, including sociological questionnaires, 
projective test responses, and a sociopolitical study of 
Colombia. It is anticipated that the program will also 
prove useful in pattern recognition, concept learning, 
medical diagnosis, and so on. We believe that this 
approach to data ana ly se s - a  computer-mediated in- 
terplay between the investigator and his da ta -ho lds  
promise of a more effective inductive analysis than 
either man or algorithm could produce alone. 
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