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Several translation procedures for the conversion of deci- 
sion tables to programs are presented and then evaluated 
in terms of storage requirements, execution time and compile 
time. The procedures are valuable as hand-coding guides or as 
algorithms for a compiler. Both limited-entry and extended- 
entry tables are analyzed. In addition to table analysis, the 
nature of table-oriented programming languages and fea- 
tures is discussed. It is presumed that the reader is familiar 
with the nature of decision tames and conventional defini- 
tions. 

1. I n t r o d u c t i o n  

This paper is concerned with the production of computer  
programs from decision tables. I t  is assumed tha t  the 
reader already teas a knowledge of the conventions used in 
constructing them. For an excellent description of decision 
tables, their advantages and application areas, the reader 
is referred to [5]. 

l)ecisioEt tables have been shown to be an effective de- 
vice for the comnmnieation of job definitions between per'- 
sons both within and outside of the data  processing area. 
In addition, they may be an extremely useful aid in com- 
municating with a computer, either via an automatic  pro- 
tramming system or as a hand-coding tool. 

IrE hand coding, a decision table is somewhat analogous 
to a flowchart. However, in ease of converting complex 
systems of conditional rules to efficient programs, insuring 
completeness, and guiding program organization, decision 
tables seem to offer significant advantages. For an example 
of such a complex program, and hand-coding experience, 
see [13]. 

Regardless of the method for translation, orderly pro- 
cedures (algorithms) m'e needed in order to achieve efti- 
cient programs from decision tables. Possible criteria for 
the efticieIlcy of such procedures are translation time, 
storage requirernents of tile programs produced, and exe- 
cution t ime of the programs produced. 

Three approaches to the conversion of conventional, 
limited-entry tables are prese~tted in Section 2 of the 
paper. They  are evaluated in terms of the criteria men.- 
tioncd above. The next section examines the more gener- 
ally useful cases of limited-entry tables, where ambiguity 
is allowed, and that of exl~ended-entry tables, which are 
shown to be identical for pro'poses of programming. In  the 
final section decision-table language structures and fea- 
tures are discussed. 

All of the techniques presented are applicable either for 
manual or automatic programming. Formal proofs of 

optimality are not included (seldom is optimality asserted) ; 
however, an a t tempt  has been made to illustrate the rea- 
soning behind each decision or assertion. 

2 .  L i m i t e d - e n t r y ~  N o n a m b i g u o u s  T a b l e s  

This section deals exclusively with the processing of con- 
ventional limited-entw tables. The term nonambiguous 
merely infers the usual restriction against redundancy or 
contradiction between rules. The concept of ambiguity is 
discussed in more detail at the beginning of Section 3. 

in attempting to devise a procedure for tile conversion 
of l imited-entw tables to computer programs, let us con- 
sider the example shown in Iqgure 1. 

Rules 

 ::31 1 N N Y 

Conditions 2 g 

3 l N 

F I G .  1 

A technique yielding a network that  accurately reflects 
the logic specified in the table is testing the rules one at  a 
time until one is found where all conditions are satisfied. 
At that  point, the actions associated with that  rule may 
be executed. This procedure might result in the following 
flowchart from Figure 1. 

, Y (,  Y ,~ n w 

n n y 

Y n n = a = 

( Y I [~  Cr_L] 

To minimize execution time, the rules would be ordered 
on relative frequency of occurrence per number of non- 
indifferent entries prior to examination. It  should be noted 
that  the entire network might be transversed in choosing 
a rule. 

In general, this technique would result in a network 
which has as many branch points as there are nonindiffer- 
ent entries in the table. A procedure which would result in 
less branch points would save computer storage. 

Let  us try a different general approach. Rather  than 
examining the rules individually, we may test the various 
conditions in order, which eliminates rule(s) from further 
consideration. This philosophy should be more eflicient 
with respect to storage, as a sitigle test can eliminate 
several rules, whereas with the previous method several 
tests arc often needed to examine a single rule. Further- 
more, the outcome of early tests is "forgotten" when 
looking at other rules. 

To illustrate this general approach, consider again 
Figure 1. If condition 1 is tested and found to be true, 
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rules 1 and 2 may be eliminated from further considera- 
tion. In either case E (error or else) is still possible. In 
making a test such as just described, we have parsed 
Figure 1 into two subtables by discriminating on the con- 
dillon in row 1, the key row. This step may be symbolized 
as follows: 

C 

2 

or more simply: 

/c,\, 
Y n 

An entire network may be constructed by repeating this 
process for each subtable produced, until all subtables 
consist of only one rule (and possibly E). At the point 
where only one rule has not been eliminated, a second 
phase must be entered in order to explicitly test all previ- 
ously untried conditions due to the possibility of an E- 
condition. Continuing with our example, the following 
network nfight result: 

Ci 

E / (  ', .,N C a 

y - ~// Y 
E 'n " E 

@ denotes a test  in the second phase 

This network with only five branch points, requires less 
storage than that  depicted previously; however, it was 
constructed in a rather arbitrary fashion. For example, 
why test condition 1 first rather than 2 or 3 ? 

We must devise an orderly procedure for choosing the 
test condition which should be used in parsing a given 
table in order to yield a network with a minimum number 
of branch points. If it is not clear that  an arbitrary choice 
will not suffice, consider the network which might have 
resulted from Figure 1 if C2 had been first: 

G "Ca 

;, Y ,/ ,, , ~,---~.~ ~,--w-(.3 C,-v--E C, k--E 
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I¢ is not surprising that this nebwork is less eftieient 
(seven branch points) them the first, because a certain rule 
(2) was indifferent to elm s{.atc of the first condition tested 
and hence could not be eliminated from further considera- 
glen regardless of the result; of the test of C,.,. 

[n general, if we parse a table on a givea condition (Ck) 
a n d  

= n u i n b e F  

=- n u n i b e t "  

= number 
= n u n ) . b e r  

n of rules in the table, 
m of conditions in the table, 
y of Y entries in Ck, 
x of N entries in C~, 
i = number of I entries in Ca., 

two subtables result, each having v ~ - I  conditions and 
:c+i attd y+i  rules, respectively. Clearly, if we carl always 
discriminate on a condition which minimizes the value of i, 
smaller subtables, and hence more ei[icient networks, 
result. Therefore, the first, step in our procedure for choos- 
ing the key condition is as follows: 

S t e p  i .  Choose  t h e  k e y  c o n d i t i o n  f r o m  the  se t  of  rows with the 
m i n i m u m  m u u b e r  of  i n d i f f e r e n t  en t r i e s .  

Perhaps an arbitrary choice from this set would su[tiee; 
however, in considering the following example we set that 
this is not the ease: 

r - - - -  

j 17 
Both C: and C: satisfy rule 1, as neither contains any in- 
different entries; however, either of the following :networks 
may be derived if only step 1 is followed. 

!f['2--; n E 

G 

The network on the right requires less storage. I t  is obvious 
that  by testing a condition with all t 7 or N entries, we may 
save branch points in subsequent second phase portions of 
the network. In a larger table this saving clearly is even 
greater. Therefore, our second step might be: 

S t e p  2. If  one  of t h e  rows c o n t a i n s  all  Y or  all N entr ies ,  dis- 
criminate on that condition. 

We now have two steps which lead to efficient choices 
of key rows. I t  should be noted tha t  these may be applied 
by looking at the conditions individually. In order to 
derive a more efficient network, it is neeessaw to take 
cognizance of the relationships between the various condi- 
tions as well as the nature of the conditions when con- 
sidered individually. I t  is in overlooking this necessity 
that  many of the "opt imal"  procedures described in the 
literature fail. 

In formulating a third step, we want to parse the table 
in a manner which will enhance the possibility of being 
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Stochastic Approach to the 
(;rammatical Coding of English 
\~'t UI.'ER S. STOLZ, PERCY H. TANNENBAUM AND 
}')(EDERICK V. CARSTENSEN 
[ ~i~ rsity of IVisconsin, Madison, Wisconsin 

A computer program is described which will assign each 
word in an English text to its form class or part of speech. The 
program operates at relatively high speed in only a limited 
storage space. About half of the word-events in a corpus are 
identified through the use of a small dictionary of function 
words and frequently occurring lexical words. Some suffix tests 
Qnd logical-decision rules are employed to code additional 
words. Finally, the remaining words are assigned to one class 
0r another on the basis of the most probable form classes to 
occur within the already identified contexts. The conditional 
~robabilities used as a basis for this coding were empirically 
derived from a separate hand-coded corpus. On preliminary 
trials, the accuracy of the coder was 91% to 93%,  with 
obvious ways of improving the algorithm being suggested by 
~n analysis of the results. 

I. lnt , 'oduetion 

h~ recent years there has been an increasing interest in 
~},: role of syntax in language behavior (of. Miller [41) and 
i!~ various mechanical alnguage processing activities (e.g., 
!l~,l~inger [5] on language translation). In many analyses 
~,f syntactic structure of language, there is often involved 
~he task of allocating each word of a language corpus to 
~s respective grammatical form class or part of speech. 
}:~)r rather obvious reasons,--e.g., relatively unavailability 
(t' trained human coders, large amounts of text, heavy 
irw(~stments of time, etc.--such grammatical coding is a 
r;~het, uneconomical undertaking, and many investigators 
}ave quite naturally turned to the use of computers to 
I)(. 'form the coding operation. Traditionally, this has been 
}~aadled through use of a large dictionary containing the 

This research was conducted under Grant GS-296 from the 
S:itioIlal Science Foundation to Dr. Tannenbaum, who is Director 
,i' ~he Mass Communications Research Center at the University 
'f Wisconsin where Mr. Carstensen is a project assistant. Dr. 
s~.,lz is currently an NSF post-doctoral fellow at Harvard Uni- 
',wsity, Center for Cognitive Studies. The use of the facilities of 
~} ~' Wisconsin Computing Center greatly abetted this work. 
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words to be encountered during the text processing. More 
recently, a straight dictionary approach has been supple- 
merited through the use of computational decision pro- 
eedures. The present paper reports on one such computa- 
tional system, WISSYN, in which decisions about how to 
code certain words are based on conditional probabilities 
of various form classes occurring in given syntactic en- 
vironments. 

Dictionary Approach. Given a set of words and a set of 
grammatical classes, one can map the former into the latter 
through a set of one-to-one or one-to-many relations in the 
form of a dictionary lookup procedure. One such program 
is limited to a set of 800 words of basic English (Lindsay, 
[3]) while others use much more extensive dictionaries, 
sometimes exceeding 75,000 words (e.g., Kuno and Oct- 
linger [2]). 

The  use of such dictionaries has several apparent short- 
comings. Most obvious, of course, is the fact that  if a word 
in the text is not included in the original dictionary, it can- 
not be coded. In principle, then, evelT word which could 
possibly be encountered in any application must be ini- 
tially accommodated. Moreover, the dictionary entry for 
each word must contain all the possible grammatical 
classes in which that  word could have membership. Since 
a great many English words have multiple form class 
membership, this introduces a substantial degree of am- 
biguity into the analysis. Finally, from a purely practical 
point of view, the immense size of any dictionary which 
would be needed to process a comprehensive range of 
English text makes such a program laborious to construct 
and most unwieldy to utilize--if, indeed, it does not com- 
pletely overtax the capacity of a given computer system. 

Computational Approach. Given such inherent disad- 
vantages, it was to be expected that  some at tempt  would 
be made to substitute, or at least to supplement, the dic- 
t ionary approach with some Vpe of estimation procedure 
designed to make the program construction less laborious 
and permit the grammatieai coding of words not included 
in the original dictionary [1, 7]. 

An example of this approach is the Computational 
Grammatical Coder (CGC) devised by Klein and Sim- 
mons [1]. This algorithm includes a relatively small diction- 
ary (approximately 400 items) of frequently occurring 
words which are unambiguous with respect to form class, 
and a formal decision procedure for estimating the alloca- 
tion for all remaining words. To accommodate these infre- 
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able to apply rule !2. Our goal is ~;o parse ~he table so (J~a~ 
furore subCables will contain :rows of all Y or all N. Le~ us 
consider i;his bable: 

i 

Applications of rules 1 and 2 imply indifference bel~ween 
the various rows for l)he first diseriminatior~. However, if 
condition 1 or 3 is chosen first, it is apparent  that  the re- 
sultant subtable will contain rows of all N and all Y, re- 
spectively. On tile other hand, an initial choice of C2 does 
not lead to such a fortuitous state and indeed the resultant 
network requires 6 branch points as compared to 5 if C1 
or Ca is used first. In order to state a rule which will allow 
us to employ a "look ahead" strategy such as this, some 
terms must be defined. 

A condition row C~ is made up of two sets of elements, 
those with Y or I (tile positive elements) and those with 
N or [ entries (the negative elements). C~ is said to be 
complemented by Cj if the negative rules in C~ have only 
Y or only N elements in Ci and/or  the positive rules in 
C~- have only Y or only N elements in Ci. Furthermore,  the 
number of complementary rules will be known as tile 
count of C~ with respect to Cj (Co-). 

As an example, consider t, he following illustrations: 

negative e lemenls  
y y I N 1 

I_ - -  J 
positive e lements  

I < II 21_l_E_d 

As tile positive elements in Ci have only Y elements in the 
corresponding rules of C¢, Cj eomplemenl~s C~. As this 
match occurs for two rules, C~j = 2. 

We may now stal~e a third step which may be taken 
after the first two lead to seeming indifference between 
several rows. 

Step 3. Discriininate on the condition row which maximizes C& 
where C& equals ~}~  Cij - C .  and where n equals the 
number of conditions in tam table, 

Translation of the following table illustrates the applica- 
tion of the steps: 

1 2 3 4 l 

Step 2 clearly indicates that condition I should be used 
for tlm entire table. 

C, n - E  
Y 

1 2 3 4 

2 Y N F I N  
3 Y 1 N Y 

,i N Y N N 

5 Y Y Y N 

Step 1 tells us that the key row should be 2, 4 or 5. Fur- 
thermore: 

(2S2 = C2,8 -4- C2,4 + C2,5 =- 0 + 2 -~- 2 = 4 

CS4 = C 4 , 2 +  C4,a + C4,5 = 1 + 0  + 1 = 2 

CS~ = C~,2 + C5,a + C~,4 = 1 + 1 + 1 = 3. 

Step 3 dictates that  C2 be used for the next discrimination. 

(4 

31 ~-3 I Y 

 444 14Y 

\ 
E- y Rule 2 C~ 

n / ' >  
n ( ¢  r, _~___ E E - - C s  Rule 2 E "5 "a 

Showing the complete network, we have: 

C2 
Y "n 

E n  ; E  . n  } n E 

5 

- Y  E Ca 

Thus far, we have stated two procedures for deriving 
programs from decision tables. The number of branch 
poml, s in a network derived via the successive parsing 
procedure is less than or equal to the number required 
when the sequential examination of rules is performed. (It 
is equal only in the eases of a i-rule table or a 2-rule table 
with only a single nondifferent entry in one of the rules.) 
However, except in the ease noted, the successive parsing 
technique requires a greater number of branch points than 
the number of conditions in the table. This latter fact leads 
us to examine a third technique which might yield better  
results with respect to storage requirements. 
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Execution of this third technique proceeds in two 

phases. 
1. Test each condition and build a mask word reflecting 

satisfaction (1, 0) or failure (0, 1) of each in a 2-bit entry• 
2. Match this mask word against a set of words which 

are derived from the rules where a 1, 0 denotes a Y ele- 
ment, 0, 1 an N element and 1, 1 an [ element. 

1 ~ actions associated with the first rule found to match 
the condition-state word will be performed. 

This procedure, as has been noted previously, minimizes 
the number of branch points in the network. However, 
this is not as valid a measure of storage usage as t~ is m 
the previous cases. It  is cleat" that  the mask words asso- 
ciated with each rule must be present at object time, as 
well as the routine for matching them. I t  is necessary to 
evaluate these additional storage requirements further, to 
determine their importance as compared to additional 
branch points. 

Using the IBM System/360 as a vehicle, the absolute 
mininmm marginal storage requirement imposed by a 
branch point is 4 bytes, i.e.: 

CR A, B 

BC X'8' 

Even this sequence displaces enough storage to aceonuno- 
date the entries of a 4 X 4 table. When one considers the 
evaluation of expressions, rather than simple operands 
which are assumed to be in registers, it is clear that the 
storage required for a single branch point could easily be 
sufficient to accommodate the masks necessary for a large 
table. The storage required for the interpretive routine 
must be considered also; however, a single, common sub- 
routine will be shared by all tables in a program. 

This technique seems to offer art advantage in terms of 
storage usage; however, the dimension of execution time 
must also be considered. The first phase, it will be re- 
called, requires testing all of the conditions in the table--- 
this would be the worst possible ease were the parsing ap- 
proach used. For a presentation of an algorithm which, 
given relative frequency of success for each rule, purports 
to develop a parsing network of optimal execution time, 
the reader is referred to [15]. 

Execution time is also adversely affected by the match- 
ing routine. Ordering the rules on expected relative fre- 
quency of success in some part enhances execution times. 

The final consideration in evaluating these procedures 
is the time required for translation from table to program. 
There can be no question that building rule masks and a 
serial set of condition tests is easier than applying the 
parsing procedure which has been described, whether by a 
human programmer or an automatic translator. Processing 
into a matching program would seem to be slightly simpler 
than applying the first approach described and would re- 
quire less time due to the fact that  a smaller program 
would result. 

Summary. The various approaches may be sum- 
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marized as follows: 

3. A m b i g u o u s  a n d  Extended-entry Tables 

Thus far, the discussion has assumed only limited-entry 
tables without ambiguity. A table is said to be ambiguou.s 
if it is logically possible tha t  a set of conditioa states occur 
such that  more than one rule be satisfied. I t  is important 
to note that  a table may be ambiguous even though tile 
nature of the conditions being eested implicitly resolve the 
problem. For example, 

is ambiguous even though the systems analyst might know 
that  C1 and C2 cannot simultaneously be satisfied. An am- 
biguous table is recognized to be one that  contains either 
redundant or contradictory rules. For  a more rigorous 
discussion, see [12]. 

At this point, one might reasonably question the neces- 
sity for being concerned with ambiguous tables. As a 
matter  of fact, these are of paramount  importance due to: 

(1) the common ease where the systems analyst is 
aware of implicit information in the problem, and is 
burdened by making it explicit in order to eliminate 
ambiguity; 

(2) the fact that extended-entry tables are essentially 
equivalent to ambiguous, l imited-entry tables, and may 
easily be mapped into that  form. 

For handling extended-entry tables, we utilize the t, ech- 
nique of reducing the problem to one which has bce~l 
solved previously. An extended-entry condition takes on 
one of the following formats: 

Stub Entry 

1. operando  o p e r a t o r  o p e r a n d l ,  " "  operand, ,  
2. operand0 o p e r a t o r  ope rand i ,  . • ", opera, tot 

operand, ,  
3. operando  vs.  ope rand i  opera tor~,  - - ", operator, ,  

These three formats may be transformed as follows: 
1. Create a separate condition for each entry opermtd 

by combining operand0, the operator, and the appropriate 
entry operand in the stub portion, and by entering a Y i~ 
the corresponding rule. All other rules arc indifferent with 

respect to this condition. 
2. Same as for 1, but bring the entire operator/operand 

pair to the stub portion. 
3. Same as for 1, but  bring the operator into the stub. 

To illustrate, we transform the table: 

M , N -  < - -  
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trite; 

Notice tim( we have transformed the extended_entw 
table into an ambiguous, limited-entw table. Making use 
of the definilions of the operators and possible equivalence 
of the operands, we may be able to condense the resultant 
table in a second phase, l)oi ng so, our example simplifies to: 

ii ii-i  I . . . . .  

IA ; i / t  Iv1-j 

 i>:k  g227 i77 1 
We may now consider the effect of ambiguity on the 

procedures described it, the preceding section. In the case 
of a parsing technique, a subtable evolves which contains 
only one condition and is of a form other than: 

or -~7 

While lhis technique readily recognizes ambiguity, it is 
unable to cope with it. 

The other procedures described offer no such simple test 
for recognizing ambiguity; however, they are able to suc- 
cessfully process ambiguous tables. This capability results 
front the fact that the rules are examined independently 
and the first one which is satisfied is accepted; hence the 
ambiguous situation is resolved. 

A two-phase translation to ambiguous, limited-entry 
form enables extended-entry tables to be processed by the 
same procedure as limited-entry tables for the preparation 
of programs. Due to the ability to resolve ambiguity, sim- 
plicity a:td speed of translation, and storage economy, the 
mask-matching technique seems very desirable except in 
the ease where execution time is critical and one of the 
rules in the table is highly dominant in terms or relative 
frequeney of success pet' number of nonindifferent ele- 
lltellts. 

4. Deeislon Table Languages  

Most activity in the area of languages to date has been 
in translating tables inlo some intermediate language 
(ti'ORTRAN, COBOL, et(,..) and allowing the standard com-. 
pilers to carry the process of machine language. This 
philosophy has prewuled as all work: to date has been in- 
forn:ative an(l experimental, and lherefore the nlost ex- 
pedient imp/enmntation of a processor was sufticient. 
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Justification for an independent decision-table language 
could spring from any of several sources such as an in- 
crease in object time efficiency, reduced compile time or 
most important, the need for language features or struc- 
ture which do riot lend themselves to implementation 
l:hrough a secondary language. Object time e~ticiency de- 
pends primarily upon the intermediate language processor, 
and it would seem that it could be controlled at that level. 
The costs of two-stage translation may be important, but 
are diminished by trends toward monitored operations arid 
the residence of programming systems on nonsequential 
devices. Finally, work to date has not produced definitions 
of language features or of a general language philosophy 
which cannot be implemented via any of several current 
programming languages. 

The above seems to indicate that no compelling reason 
exists to implement a decision-table processor which is 
independent of an intermediate language. The choice of 
the intermediate language influences many facets of the 
decision table language such as variable-naming conven- 
tions, statement referencing, allowable action formats, 
etc.; however, the general nature of the decision-table 
language is relatively insensitive to this choice. 

Implementation via an intermediate language does raise 
one major question as to the philosophy or nature of the 
decision-table language, that of table/intermediate lan- 
guage dominance. It is possible to formulate a useful 
language where the progralnmer works entirely in terms of 
decision tables. He is isolated from the intermediate 
language per se to the greatest extent possible, and, when 
forced to use certain statements, he may regard them as 
isolated features of the decision-table language. The al- 
ternative approach is to view the ability to process decision 
tables as an adjunct of the intermediate language, with the 
ability to freely utilize the features of both forms in solving 
a problem. In this latter ease, neither the intermediate 
language nor decision tables are dominant, but they are at 
the same level. 

The table-dominant approach would stern to offer ad- 
vantages in terms of ease of learning, complete problem 
orientation, etc. ttowever, is this a truly valid observation? 
Would it not be possible to present a well-chosen subset of 
a nondominant language and obtain the same simplifying 
advantages? 

More important, it must be recognized that relatively 
few computer jobs lend themselves to formulation entirely 
in terms of decision tables. It may be possible to broaden 
the applicability of a table-dominant language by forcing 
the formulation of certain other jobs to conform to deci- 
sion-table conventions via awkward and urmsual use of 
the language (e.g. unconditional tables). On the other 
hand, a very large class of jobs exist wherein certain por- 
tions are well suited to formulation as decision tables (flow 
of control, logic, data validity, etc.), and other portions 
best stated as decision tables (assuming that it is possible 
to do so). 

It is in the latter area that primary justification for a 
processor exists and where a nondominant approach is 
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dictated.  I t  would seem tha t  the table-dominant  approach 
great ly restricts the  range of usefulness of a decision table 
language by  "hiding" capabilities and presents no com~ 
pelling advantages  in terms of language power or processor 

implementat ion ease. 
I n  addit ion to considerations such as those above, 

several table-oriented features should be included in a de- 
cision table language, l~ollowing is a brief description of 
several of the more impor tant  facilities, many  of which 
have been postulated or implemented elsewhere. 

1. The  programmer  should have the option of ranking 
storage utilization, execution time and translation time in 

order of preference. 
2. The programmer  should have the option of causing 

the second phase of a parsing procedure to be deleted, i.e., 
accept  a rule after all, and then one rule has been elimi- 
nated. This implies no error-else actions and results in 

economies in every aspect,. 
3. Statistical analysis aids should be included in the 

language, ti'or example, the programmer should be able to 
cause a count  to be kept of the frequency of acceptance of 
each rule. These figures are necessary as input  to the com- 
piler if execution t ime is to be minimized, and they  could 
be revised periodically via such a tally feature. In  addition, 
statistics on the states of individual conditions might  be 
of interest to  the systems analyst.  

4. Another  class of statistics which would be of use to 
the systems programmer  is concerned with the frequency 
of utilization of various language features and options. 
This type  of information is seldom available in representa- 
t ive form and great effort is spent to estimate it. With  the 
advent  of monitored operation, this information is easily 
gathered and maintained and is clearly of use with regard 

to all p rogramming systems, not  n~erely [,o decision table 

languages. 
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